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The linear stability characteristics of non-isothermal flow in vertical annuli has been 
determined for two geometries. The analysis demonstrates that a fully developed 
mixed-convection flow in a vertical annulus is unstable in certain regions of an 
appropriate parameter space. Consequently, parallel countercurrent flows, predicted 
by previous numerical models and commonly used by engineers, are often physically 
unrealizable and can be observed experimentally only in special circumstances. In 
addition, it is found that the most unstable disturbances are often asymmetric in the 
parameter range of practical interest. The instability behaviour was also found to 
depend on whether the inner or outer cylinder was heated. 

1. Introduction 
Non-isothermal flows in ducts are of fundamental importance in engineering 

applications. Unfortunately, understanding of this motion and the associated heat- 
transfer mechanisms is incomplete and, in fact, often erroneous. An example of this 
lack of understanding is often found in the analysis of fully developed, mixed- 
convection flows in ducts. Fully developed isothermal flow is characterized by a 
constant axial pressure gradient, with the transverse velocity components equal to 
zero. Hence, fully developed isothermal flow is a parallel flow. Mixed convection 
results when temperature gradients in the forced flow lead to density gradients in the 
fluid and, in the presence of a gravitational field, these variations in density induce 
varying body forces in the fluid. In this situation, it is still common to model the flow 
as being parallel. When this assumption is made the velocity and temperature 
profiles become easily predicted functions of the transverse variables only, and the 
problem is greatly simplified. However, a consequence of this simplification is that 
physically unrealistic parallel reverse flows are predicted. Regrettably, many 
correlations for heat transfer and pressure drops in ducts have been developed from 
these simple, but erroneous, results. It is the purpose of this paper to demonstrate 
that parallel flow in a heated vertical annulus is unstable in most regions of the 
appropriate parameter space so that a parallel flow in such a duct will seldom be 
observed experimentally. 

Since the annular configuration is commonly used in engineering applications, a 
complete understanding of the non-isothermal flow in such geometries is important. 
In addition, from a computational standpoint, the annular configuration allows 
investigation of a wide range of geometrical effects. For example, in the narrow-gap 
limit the problem approaches that of flow in an infinite two-dimensional slot. As the 
gap width is increased, the effects of wall curvature become important. In  this paper, 
the linear stability of fully developed, mixed-convection flow in annuli of moderate 
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aspect ratio, in which the effects of wall curvature are quite significant, is 
investigated. 

It has been demonstrated that flow in a heated horizontal annulus behaves quite 
differently from the corresponding isothermal flow. Secondary flows induced by the 
density stratification completely alter the flow transition and heat-transfer 
mechanism, and the flow can certainly not be considered to be parallel (Nieckele & 
Pantakar 1985; Kaviany 1986). With a vertical annulus, the effect of the density 
variation on the flow is not as obvious. It will be demonstrated, however, that, 
because of hydrodynamic instability, the flow in a vertical annulus will, in many 
cases, not be a parallel flow. 

Several investigators have obtained numerical and analytical results for mixed 
convection in vertical annuli (e.g. Shumway & McEligot 1971 ; El-Shaarawl & Sarhan 
1980; Kim 1985; Hashimoto, Akino & Kawamura 1986). These results were based on 
the use of the parallel-flow assumption. Consider, however, the results of Maitra & 
Raju (1975), who developed an exact solution for the Nusselt number based on 
parallel, fully developed flow in an annulus, with a constant heat flux on the inner 
wall and an adiabatic outer wall, and compared their analytical result to experiment. 
They found that the measured heat-transfer rates were significantly higher than 
those predicted by the theoretical model. This effect occurred a t  Reynolds numbers 
as low as 200. It is speculated by Maitra & Raju, correctly we believe, that the 
discrepancy between theory and experiment was due to hydrodynamic instabilities. 
Careful experimental observations of the flow patterns of non-isothermal flows in 
annuli are not available. 

A related problem which has been studied more extensively is non-isothermal flow 
in a vertical pipe. An extensive list of pertinent references can be found in Zeldin & 
Schmidt (1972). Most studies have adopted the assumption of parallel flow in their 
analysis. Important exceptions include the work of Scheele & Hanratty (1962), who 
observed experimentally that the flow in a heated circular tube is stable near the 
inlet, but becomes unstable near the fully developed region. When buoyancy forces 
oppose the motion of the fluid, such as in upward flow in a cooled pipe, the transition 
to turbulence is abrupt. However, when they aid the motion of the fluid, the initial 
transition results in a new laminar equilibrium non-parallel flow. Thus, in the 
opposing-flow case, the instability is subcritical, and in the aided-flow case it is 
supercritical. Flow patterns for the supercritical case were observed by Kemeny & 
Somers (1962), and were called non-laminar to distinguish them from fully turbulent 
flow. The non-laminar heat-transfer rates were found to be as much as 30% larger 
than those observed in laminar flow. In addition, it was found that the flow can 
become non-laminar a t  Reynolds numbers as low as 30. Analytical confirmation of 
these results was achieved by Yao (1987a), who demonstrated that upward flow in 
a heated vertical pipe is unstable for certain parameters and that a supercritical 
instability will likely consist of a double-spiral structure. A stability analysis by Yao 
(1987 b )  for opposing mixed convection in a vertical pipe demonstrates similar 
behaviour. 

In  this paper, a linear stability analysis of fully developed, non-isothermal flow in 
a vertical annulus is performed. Although the stability of non-isothermal flow in a 
vertical annulus has not been previously investigated, a number of studies, relevant 
to the present investigation, will be briefly reviewed. Three limiting cases of the 
present study are readily identified: ( i )  the narrow-gap limit is analogous to a two- 
dimensional channel flow ; (ii) the problem approaches the free-convection limit as 
the Reynolds number Re approaches zero; and (iii) the flow becomes isothermal as 
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the Grashof number Gr goes to zero. In addition, combinations of these limiting 
conditions result in other situations which have previously been studied. In 
particular, isothermal flow in a narrow-gap annulus approaches plane Poiseuille flow, 
while free convection in such an annulus approaches free convection in an infinite, 
two-dimensional vertical slot. 

The linear stability of plane Poiseuille flow has received a great deal of attention. 
Early work used involved asymptotic methods. Numerical solutions are now routine 
and show that the flow is unstable at  a Reynolds number, based on slot width and 
average velocity, of about 7700. 

The problem of the stability of natural convection in an infinite two-dimensional 
vertical slot has also received considerable attention. The original work was done by 
Gershuni (1953), who used a Galerkin method (at the lowest order of approximation 
possible) to study the stability of natural convection between infinite vertical plates 
maintained at different temperatures. The accuracy of the method was later refined 
by including more terms in the approximation by Gershuni & Zhukhovitskii (1955) 
and Rudakov (1967). Birikh (1966) studied the hydrodynamic stability of plane 
parallel flows with cubic velocity profiles. Such a situation arises in natural 
convection of a fluid of zero Prandtl number contained between infinite vertical 
plates maintained at  different temperatures. Addressing the problem of minimizing 
heat transfer between vertical boundaries, Gill & Davey (1969) developed a stability 
criterion for air in a infinite slot based on the slot width and the temperature 
difference between the surfaces. Birikh et al. (1969) investigated the effect of a 
longitudinal temperature gradient imposed on the transverse temperature difference. 
Vest t Arpaci (1969) investigated the problem both analytically and experimentally. 
In their analysis it is shown that, for a basic state possessing odd symmetry and 
disturbances expanded in the classical normal-mode form, the disturbance wave 
speed must be zero. It is pointed out by Gill & Kirkham (1969) that this result is not 
completely general, and results are presented which show that, at large Prandtl 
number, the instability sets in as travelling waves. However, at  larger values of Pr, 
the disturbance energy can originate from the potential energy associated with the 
buoyant forces. Korpela, Gozum & Chandrakant (1973) addressed this dependence 
on the Prandtl number and found that, at  Prandtl numbers below 12.7, the 
disturbances are stationary. 

The stability of natural convection in tall vertical annuli has been investigated by 
Choi t Korpela (1980) and McFadden et al. (1984). Choi & Korpela investigated only 
axisymmetric disturbances and found that the instability boundary is a function of 
the aspect ratio and Prandtl number. For air, they found that the critical Grashof 
number varied from about 8000 in the limit of a two-dimensional slot to about 14000 
in a slot with an aspect ratio of 0.25. At  smaller aspect ratios, the critical Grashof 
number for an axisymmetric disturbance became large. McFadden et al. (1984) 
extended these results to account for azimuthal modes. Their results showed that, for 
air, at  an aspect ratio of about 0.77 and critical Grashof number of about 9500, the 
most unstable disturbance becomes the first circumferential mode. The value of the 
critical Grashof number is approximately loo00 for all aspect ratios smaller than 
0.79. 

Mott (1966) determined the stability boundary, based on axisymmetric dis- 
turbances, for isothermal flow in an annulus for several aspect ratios using 
asymptotic methods, and verified his results with finite-difference calculations. He 
found that as the aspect ratio decreased the value of the critical Reynolds number 
increased. Mott & Joseph (1968) expand these results and discuss the possibility of 
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asymmetric disturbances being important. In  each case, however, only axisymmetric 
disturbances are investigated. 

The assumption that the most unstable disturbance will be axisymmetric in the 
case of annular flows is quite restrictive. Squire’s theorem, which is valid for two- 
dimensional flows, states that  the growth rate of an unstable three-dimensional wave 
is equal to that of a two-dimensional wave at a smaller Re. Consequently, stability 
studies on plane Poiseuille flow are usually limited to  two-dimensional disturbances. 
This result can also be derived for the problem of natural convection in a two- 
dimensional slot (Vest & Arpaci 1969). However, an analogue of Squire’s theorem 
cannot be proved rigorously for an axisymmetric basic flow. In  spite of this, many 
investigators have assumed that the disturbances of interest are axisymmetric in 
their studies. On the other hand, McFadden et al. (1984) found that the most unstable 
disturbance for natural convection in annuli is asymmetric a t  small aspect ratios. 
Further indication of this phenomenon is found in the results of Yao (1987a, b )  which 
show that heated flow in a vertical pipe first becomes unstable to asymmetric 
disturbances over a large portion of the parameter domain. The conclusions 
mentioned above make it clear that a complete determination of the linear stability 
boundary will require investigation of asymmetric disturbances. 

A linear-stability analysis of fully developed flow in a vertical annulus, with 
one surface maintained at a temperature a constant amount above the other, is 
performed in the next section. The analysis accounts for both axisymmetric and 
general disturbances. The results presented are for two aspect ratios in order to 
demonstrate the effect of wall curvature. The outcome shows that the flow is 
unstable (see figures 4 and 5) for certain parameter ranges. I n  addition, it is found 
that the most unstable disturbances are often asymmetric. 

2. Problem formulation 
Consider the annular geometry illustrated in figure 1.  If we define a dimensionless 

radial coordinate as g = ( r - b ) / ( u - b )  and an aspect ratio as A = b / ( a - b ) ,  where a 
and b are, respectively, the outer and inner radii of the cylinders, the dimensionless 
Navier-Stokes and energy equations, in terms of annular-cylindrical coordinates 

where 

and 
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FIGURE 1. Geometry and coordinates. 

The z-coordinate is non-dimensionalized by the gap width a - b, the velocities ‘by 
the mean axial velocity W ,  the pressure by pw2, and the time by (a-b)/W. The 
dimensionless temperature is given by 0 = (T- Ta)/(Tb- T,), where T, and Tb are 
the outer and inner wall temperatures, respectively. The parameters appearing in the 
equations are the Reynolds number Re = (a-b) W/v, Prandtl number Pr = v/a,  
and the Grashof number Gr = P g ( ~ - b ) ~  (Tb-Ta)/v2, where g is the gravitational 
acceleration, p the thermal expansion coefficient, a, here, the coefficient of thermal 
diffusivity, and v the viscosity. 

Investigation of the governing equations and their subsequent non-dimen- 
sionalization reveals that if > T,, Gr is positive; if T, > E ,  the outer cylinder 
temperature is higher than that of the inner cylinder, and the only change that 
occurs in the governing relations is that Gr changes sign. Further investigation of the 
problem reveals that there are two distinct base-flow situations that may occur. 
These are upward flow with the outer cylinder heated (which is analogous to 
downward flow with the inner cylinder heated) and upward flow with the inner 
cylinder heated (which is analogous to downward flow with the outer cylinder 
heated). Therefore, by investigating the stability behaviour for both positive and 
negative values of Gr, the complete stability boundary for mixed convection in an 
annulus of a particular geometry is determined. 

In this paper, two geometries are investigated. Their aspect ratios are A = 2.414, 
which corresponds to equal cross-sectional areas for the inner and outer annular 
regions, and A = 10. The larger aspect ratio was chosen to clearly illustrate the effect 
of wall curvature on the results. In both cases, the results will show that curvature 
has a significant effect on the shape of the neutral stability boundary. 

10 FLM 201 
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2 .1 .  Basic state 

Since we are interested in studying the stability of non-isothermal, fully developed 
flow in an annular region, we split the dependent variables in the governing 
equations into two parts : basic state and disturbance. If the classical assumption of 
fully developed flow is applied to (la-e),  the basic state is independent of the axial 
and azimuthal coordinates. The governing equations are 

( 3  a)  

The axial-pressure gradient 
global mass conservation : 

The solutions of (3a-c) are 

can be determined with the use of the requirement of 

algebraically complicated and are not presented here. 
Typical basic velocity profiles are given in figure 2.  For Gr/Re = 80 and -80, the 
velocity profiles contain points of inflection which suggest a potential for instability. 
The corresponding basic temperature distributions are given in figure 3. 

2.2. Disturbance 
The linear equations governing the infinitesimal disturbances are obtained by 
subtracting the basic-state equations from the full equations and neglecting 
nonlinear terms. They are 

as .aw as aP I Gr * 

at aq a2 az Re Re2 
-+UP+ W- =--+-D:s+-8, 

-+u-+w-=- a4 ,ao a6 i Di6. 
at az RePr 

(44 

The continuity equation is satisfied by the choice of two stream functions, f and 
g, which are defined by 

(5a) 
a i  
a7 ' 

v = -  



The linear stability of mixed convection in a vertical annulus 285 

W 

-0.2 I 1 

0 0.5 1 

71 

FIGURE 2. Basic-state velocity profiles. Dashed line represents A = 2.414, solid line A = 10. 
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FIGURE 3. Basic-state temperature profiles. 

The remaining four equations can be reduced to three by the elimination of 
pressure through cross-differentiation. The number of independent variables is then 
reduced to one with the assumption that the disturbances are of the usual normal- 
mode form 

$ = $(r)  ei[a(z-ct)+n41 , (6) 
10.2 
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where 4 = f: @ or 6,  and a and n are the axial and azimuthal wavenumbers, 
respectively. Equations (4a-e) then become 

2 (3 + n2) f”” + qf ”’ + [ - 201’ -m- ia Re W]f” 

+- a3n +iRe(*w+%- nq ) ] g + - #  Gr 

11 +A ?I+A y + A  ( v + A ) ~  Re 

1 nf.’+-Y+[ 2n -,-a2n-ian n3+n r e w  f’ 

11 + A  V + A )  

f+(-a(q+A))g’“ 
3a2n n3-n + 

l l + A  +ia2ReW(q+A) 9’ 1 a + “72 
a3(?/+A)+- 

Gr + in2 Re x] l l + A  g+n-O Re 

n 

a2-iuRePrW 8 1 n2 B’+ v+- 1 

+ [ia Re P r  07] f + g = -iucRePr8, (7c) 

where a prime denotes differentiation with respect to 7. 
These equations represent a ninth-order system. Eight boundary conditions, which 

reflect the no-slip, no penetration and constant-temperature conditions on the inner 
and outer cylinders, are given by 

@ a )  g’(0) = af(O)+-g(0) n = f’(O)+- f(0) = e(0) = 0, A A 

( 8 b )  
n f(1) - g’(1) = a.f(l)+-g(l) = f’(l)+- +A = 0( l )  = 0. 

l + A  
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The ninth boundary condition establishes a datum for the stream functions and is 
given by 

( 8 4  g(0) = 0. 

Equations (6a-c) and the boundary conditions form a complex eigenvalue 
problem. The stability boundary in the (Re, Gr, n, a)-space is determined by the point 
at  which the imaginary component of the complex wave speed ci is equal to zero, with 
the disturbance being unstable for c1 greater than zero. This also forms a minimax 
problem with ci = 0 where Re and Gr/Re are local minima for various wavenumbers 
a and n. A large number of calculations is required to establish the projection of the 
stability boundary on the (Gr/Re, Re)-plane. The computational method is described 
in the next section. 

3. Method of solution 
A pseudospectral Chebyshev method is used to discretize the equations and 

incorporate the boundary conditions (Orszag 1971). The collocation points are 
selected to be the extrema of the nth-order Chebyshev polynomials so that the 
truncation error is minimized. The eigenvalues of the resulting matrix are determined 
with the aid of a complex QR algorithm as described by Moler & Stewart (1973). 

The convergence of the numerical scheme has been checked by varying the number 
of collocation points. It has been found that 51 terms are usually sufficient. For large 
values of the azimuthal wavenumber, more terms are needed to avoid spurious roots. 
It was observed that ‘true’ roots always appear when the number of discretization 
terms is increased. On the other hand, spurious roots usually appear as a group and 
their values change drastically when N is altered. A great deal of care was exercised 
to ensure that the correct eigenvalues were identified. 

The accuracy and validity of the numerical scheme was checked by favourable 
comparison with published results in the limiting cases mentioned earlier : (i) plane 
Poiseuille flow ; (ii) natural convection in a two-dimensional slot ; (iii) natural 
convection in a tall annulus ; and (iv) isothermal flow in an annulus. 

To compare our results with those of a two-dimensional channel, we set A = 1OOO. 
In this case, as Gr+O, the basic flow approaches plane Poiseuille flow. In  a careful 
numerical study of this problem, Orszag (1971) found the wave speed of the most 
unstable disturbance at Re = 13333, a = 2.0 and n = 0. Our calculation of this 
parameter agrees with his result to 5 significant figures. 

With A = 1000, as Re+O the situation becomes that of natural convection 
between infinite parallel plates maintained at  different temperatures. Lee & Korpela 
(1983) have determined that the critical point lies at Gr = 8038 and a = 2.8. Using 
a linear interpolation of the imaginary component of the complex wave speed 
between its value at Gr = 8000 and 8100 a t  wavenumbers of a = 2.7, 2.8, and 2.9, 
then using a quadratic interpolation in a of these results, we find the critical 
condition to be Gr = 8015 at a = 2.8, a difference in the critical Grashof number of 
about 0.3%. The critical wave speed which we predict at this condition is c, % 

This is consistent with the results of Korpela et al. (1973) for natural convection in 
a two-dimensional slot, in which it is found that for Prandtl number less than 12.7, 
the disturbances are stationary. 

Our results for natural convection in a tall annulus can be compared to the results 
of Choi & Korpela (1980) and McFadden et al. (1  984). Choi & Korpela considered only 
axisymmetric (n = 0) disturbances, while McFadden et al. considered both axi- 
symmetric and asymmetric disturbances. The results in each case are nearly identical 
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FIGURE 4. Marginal-stability boundary for A = 10. 

when the most unstable disturbance is axisymmetric. Since the latter group 
considered asymmetric disturbances as well, they provide a more convenient means 
of comparison for our results. 

At a Prandtl number of 0.71 and an aspect ratio of 1.5, McFadden et al. (1984) 
found that the critical condition is Gr = 8512, a = 2.75, n = 0 and c,  = 1.57 x lop3. 
Our corresponding values are Gr = 8521, a = 2.78, n = 0 and c, = .1.6 x In  the 
case of a non-axisymmetric disturbance a t  a Prandtl number of 0.71 and an aspect 
ratio of 0.25, McFadden et al. find Gr = 10435, a = 2.24, n = 1 and c ,  = 3.1 x lop3. 
The present calculations yield Gr = 1 0 4 4 3 , ~  = 2.22, n = 1 and c,  = 3.1 x lop3. Thus, 
our results agree well with those in the reference for both axisymmetric and 
asymmetric disturbances. In  addition, our calculations predict that the aspect ratio 
below which the most unstable disturbance will be asymmetric is A = 0.77, in 
agreement with McFadden et al. 

In the limit if isothermal flow, our results agree well with those obtained by Mott 
(1966) for axisymmetric disturbances. However, we find that as the aspect ratio 
decreases, asymmetric modes become the most unstable. Below aspect ratios of 
about A = 4, we find that, depending on the geometry, azimuthal wavenumbers 
n = 1, 2, or 3 may establish the most unstable mode. For example, in the 
results presented in the next section, we find that a t  Gr = 0 and A = 2.414, the 
most unstable mode corresponds to  n = 2. The critical Reynolds number for this 
mode is about 4% less than that for the axisymmetric mode. 

4. Results and discussion 
The following results are for Pr = 0.71 a t  A = 2.414 and 10. The instability 

boundaries in the (Re, Gr/Re)-plane are shown in figures 4 and 5. The axial and 
azimuthal wavenumbers and wave speed for selected critical conditions are listed in 
tables 1 4 .  
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FIQUXE 5. Marginal stability boundary for A = 2.414. 

Re 

150 
500 

1000 
4Ooo 

5000 

6000 

8000 
13000 
17000 
7876.2 
9Ooo 

11OOO 
13000 
15000 
17000 

GrIRe 

90.57 
68.17 
63.33 
58.05 

57.83 
57.83 
57.49 
57.49 

55.26 
55.24 
55.23 
55.23 
55.23 
55.23 
55.27 
57.07 
57.09 

49.47 
37.37 
30.13 

11.97 
20.20 
24.76 
28.10 
30.26 

0 

a 

2.53 
2.17 
1.53 
0.86 

1.90 
1.83 
0.79 
0.71 

2.23 
2.21 
2.18 
2.25 
2.21 
2.07 
2.03 
0.75 
0.66 

2.25 
2.15 
2.04 
2.02 
1.97 
1.84 
1.77 
1.72 
1.68 

n 

0 
8 

17 
19 

13 
14 
19 
20 

5 
6 
7 
8 
9 

10 
11 
19 
20 

0 
0 
0 
0 
0 
0 
0 
0 
0 

cr 
0.84 
0.7 1 
0.66 
0.55 

0.53 
0.53 
0.53 
0.55 

0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.52 
0.54 

0.46 
0.41 
0.37 
0.39 
0.38 
0.35 
0.34 
0.33 
0.32 

Type 
T 
T 
T 
T 

I 
I 
T 
T 
I 
I 
I 
I 
I 
I 
I 
T 
T 
I 
I 
I 
S 
S 
S 
S 
S 
S 

TABLE 1. Inner wall heated, A = 10. T = thermal instability type; I = interactive; S = shear 
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Re 

150 
500 

1000 
2000 
3000 
4000 
5000 
6000 
7000 
8Ooo 
8500 
7876 
7785 
781 1 
7983 
8163 
8425 
8566 
8609 

GrlRe 

- 89.96 
- 63.09 
- 56.89 
-52.90 
- 50.69 
-48.81 
-46.99 
-55.91 
-42.63 
- 39.22 
-35.43 

0.0 
-5.0 
- 10.0 
- 15.0 
-20.0 
- 25.0 
- 30.0 
- 32.5 

a n c, Type 
2.59 0 0.79 T 
2.38 0 0.67 T 
2.20 0 0.59 T 
2.03 0 0.52 T 
1.95 0 0.47 T 
1.90 0 0.45 T 
I .87 0 0.43 T 
1.84 0 0.41 T 
1.81 0 0.39 T 
1.76 0 0.38 T 
1.75 0 0.37 T 
2.02 0 0.39 5 
2.02 0 0.39 5 
1.98 0 0.38 5 
1.95 0 0.38 5 
1.88 0 0.38 5 
1.84 0 0.37 5 
1.78 0 0.37 5 
1.77 0 0.37 5 

TABLE 2. Outer wall heated, A = 10 

Re GrlRe 

150 93.24 
500 70.76 

1000 63.77 
3Ooo 56.40 
5000 52.79 

8000 51.76 
54.28 

12000 4.88 
47.60 

16000 41.07 
20 000 34.66 
24 000 27.88 

9530 0.0 
12000 10.75 
16000 18.32 
20 OOO 23.11 
24 000 27.29 

a n cr Type 
2.31 1 0.91 T 
1.58 5 0.77 T 
1.29 5 0.68 T 
0.71 6 0.62 T 
0.70 5 0.54 T 

0.60 5 0.60 T 
1.29 5 0.52 1 

0.51 5 0.47 T 
1.42 5 0.49 1 

1.77 4 0.43 1 
1.83 3 0.39 1 
1.91 2 0.35 1 
1.87 2 0.38 5 
1.63 3 0.37 5 
1.44 3 0.35 5 
1.04 4 0.35 5 
0.94 4 0.34 5 

TABLE 3. Inner wall heated, A = 2.414 

Comparison df figures 4 and 6 reveals that the general stability behaviour in each 
geometry is similar. In both cases the instability boundaries behave quite differently 
depending on which cylinder is heated, except a t  low values of Re, where the results 
are symmetric about the Gr = 0 axis. Investigation of the governing relations for the 
basic state reveals that, in the case of natural convection (Re = 0 ) ,  the only effect of 
heating the outer cylinder as opposed to the inner one is that the velocity changes 
sign everywhere. The only effect on the stability results is then to reverse the sign of 
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Re 

150 
500 

1000 
ZOO0 
4000 
6000 
8000 

GrIRe a n cr Type 
-91.44 2.65 0 0.72 T 
-60.12 2.45 0 0.63 T 
-51.42 2.27 0 0.56 T 
-44.48 2.09 0 0.49 I 
-36.62 1.94 0 0.42 I 
-28.89 1.88 0 0.39 I 
-17.01 1.83 1 0.38 I 

TABLE 4. Outer-wall heated, A = 2.414 

the disturbance wave speed. Thus, the low-Re symmetry, as the natural-convection 
limit is approach, is expected. Far positive Gr, in both cases the effect of heat transfer 
is initially stabilizing (see sections denoted CDE on figures 4 and 5). In both 
geometries, the maximum stable values of Re are much larger than the critical Re for 
Gr = 0. Another similarity is that the regions of stable flow are much larger for 
positive Gr than they are for negative Gr. 

In spite of the broad agreement between the results for each geometry, there are 
some differences in detail. For example, with the inner cylinder heated, the region of 
stable flow in the (Gr/Re, Re )-plane extends further along the Re-axis for the smaller 
aspect ratio than it does for A = 10. The points labelled C in figures 4 and 5 identify 
the point of maximum stable Re. With the larger aspect ratio, this point is at Re = 
16970 for Gr/Re = 30.22. With the smaller aspect ratio, this value is Re = 24200 for 
Gr/Re = 27.5. For small Gr/Re, at A = 10, heating has a stabilizing effect for both 
positive and negative Gr (sections CD and DE on figure 4). This does not occur with 
the smaller aspect ratio. This indicates that, for the larger aspect ratio at small 
heating values, the basic state is beginning to behave like a channel flow. However, 
at larger heating values, even though the basic state looks very much like a two- 
dimensional channel flow, its stability character is different and the effect of the wall 
curvature is still significant. With the heated outer cylinder (negative Gr) ,  the shape 
of the stability boundary is discernibly different for A = 10 compared to A = 2.414. 
At A = 10, the effect of heating is initially stabilizing, as it is with the inner cylinder 
heated. At  A = 2.414 the effect of heating is always destabilizing, in contrast to 
results for the inner cylinder heated. 

Figures 4 and 5 show that, in both cases, when the inner cylinder is heated, there 
are three distinct curves which form the stability boundary. The intersection 
between two different curves can be identified and the curves continued past the 
points at which they cross. This is not the case when the outer cylinder is heated. In 
this situation the stability boundary is formed by a single smooth curve. Because of 
the different character of the results, the detailed behaviour of each region is 
discussed separately below. 

4.1. Heated inner cylinder 
The instability that occurs a t  small Re will be referred to as thermal instability since 
it is induced by an unstable temperature disturbance as demonstrated by Yao 
(1987 a)  in the study of mixed-convection stability of vertical pipe flow. Sections AB 
on figure 4 and 5 identify this curve. A shear instability exists near Gr = 0, identified 
by sections CD on figures 4 and 5. For intermediate values, the term iterative 
instability will be used. 
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The above criteria for the definition of the instabilities differs from that used by 
Hart (1971) in which the instabilities are classified according to the source of the 
disturbance energy. For the thermal instability, a check of the energetics of the 
critical eigenmodes for the aspect ratio of 10 indicates that the disturbance energy 
is gained from both the potential energy associated with the buoyant effect and 
the kinetic energy associated with the Reynolds stresses. However, in this case, the 
kinetic energy supplies about 16 times as much energy to the disturbance as does the 
buoyant potential energy. This ratio is pretty much constant for the thermal mode. 
A check of the energetics of the critical shear mode for the aspect ratio of 10 indicates 
that the disturbance gathers about equal amounts of energy from each source. This 
ratio varies only slightly for the shear mode. The critical mode of the interactive 
instability at Re = 5000 is found to derive about 8 times as much energy from the 
shear forces than i t  does from the buoyant effect. However, with the interactive 
instability, at Re = 6000, this ratio is down to 3.6, and a t  Re = 8000, its value is 1.4. 
Thus, the ratio of kinetic to potential energy in the interactive instability is found 
to be a function of Re, and lies between the results for the thermal and shear 
instabilities. 

Investigation of the numerical results presented in tables 1 and 3 shows that the 
different instabilities possess distinct characteristics. Considering first the results for 
A = 10 (table 1)  it is seen that for the shear instability, n = 0 is clearly the most 
unstable mode. This behaviour is expected since, at  A = 10, we have a nearly two- 
dimensional flow. The instability boundary is almost symmetric with respect to the 
condition Gr = 0 for low heating. This agrees with Squire’s theorem. The wave speed 
c, and the axial wavenumber a decrease with increasing Reynolds number. 

For the smaller aspect ratio, the results for the shear instability in table 3 show 
that asymmetric disturbances are the most unstable. At  GrlRe = 0, n = 2 is the 
critical azimuthal mode (point D in figure 5). As Re increases, the value of the 
azimuthal wavenumber also increases and reaches a value of n = 4 at Re = 24000, 
near the intersection with the interactive instability boundary (point C in figure 5 ) .  
The disturbance wave speed c, and the axial wavenumber a decreases with increasing 
Re as they do for the larger aspect ratio. 

At A = 10, in contrast to the shear mode, most thermal instabilities are 
asymmetric. The critical azimuthal wavenumber varies from n = 0 near the natural- 
convection limit to n = 19 near the intersection of the thermal and interactive 
instability boundaries (along section AB on figure 4). Because there are so many 
azimuthal modes that must be considered in this region, a large number of 
computations was necessary to establish this boundary. Minimum points for each 
value of n at a particular Re were determined by a quadratic interpolation of the 
three most unstable calculated points in the (a, Gr/Re)-plane. This procedure did not 
firmly establish a single critical value for n, however. Further complication results 
from the fact that the critical value of the azimuthal wavenumber n is not always 
obvious, as is illustrated in figure 6 and table 1 for Re = 5000. In spite of these 
difficulties, the trend in the results is clear. For the thermal mode, the critical 
azimuthal wavenumber increases with increasing Reynolds number. As the Reynolds 
number increases to a value of 5000, the critical value of n increases to 19. Referring 
to figure 4, along section AB of the instability boundary, the critical axial 
wavenumber a decreases from 2.53 to 0.79 as Re increases. This indicates that the 
axial wavelength grows with the basic-state flow speed as is the case with the shear 
instability discussed above. Results for smaller Re than are presented in table 1 show 
that the computed critical wavenumber approaches the natural-convection critical 
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FIGURE 6. Instability behaviour in the (a, Gr/Re)-plane for A = 10, Re = 5000. 

wavenumber 2.8 as Re + 0. This further demonstrates the numerical accuracy of the 
solution method. 

With the smaller aspect ratio the behaviour is similar. Referring to figure 5 ,  along 
section AB of the instability boundary the critical azimuthal wavenumber n 
increases from 1 to 5.  However, n never reaches the large values that occur with 
A = 10. This is expected since the annular gap width to circumference ratio is much 
smaller in this case and hence there are fewer disturbance ‘cells’ contained around 
the perimeter of the annulus. The critical axial wavenumber a again decreases with 
increasing Re, as it does with the larger aspect ratio. This trend is the same as that 
for A = 10, but the wave speed itself is higher than that for the larger aspect ratio. 
Vest & Arpaci (1969) have shown that, in the limit of natural convection in a two- 
dimensional channel, disturbances of the type considered here are stationary. Since 
buoyant forces play a dominant role in the thermal instability, as Re decreases and 
the aspect ratio increases, a decrease in the disturbance wave speed is not 
unexpected. 

In between the thermal and the shear instabilities, the instability boundary 
possesses characteristics that distinguish it,  even in regions near the intersections 
with the other instability boundaries, and is labelled as interactive in figures 4 and 5 
(sections BC of the instability boundaries in figures 4 and 5). Figure 6 illustrates the 
appearance of two distinct minimum points in the (a, Gr/Re)-plane at  A = 10 and 
Re = 5000. These minimum points correspond to the thermal and interactive 
instabilities. With the larger aspect ratio (figure 4), the curves of the thermal and the 
interactive instabilities intersect near Re = 5000, where a and n of the interactive 
instability are 1.9 and 13, respectively. This indicates that the interactive wave is 
about half of the size of the thermal instability in the axial direction and one and a 
half times wider in the azimuthal direction. Linear interpolation of the results at 
Re = 5000 and 6000 shows that for Re > 5160, the interactive instability becomes 
unstable at a smaller value of Gr/Re than does the thermal instability. In contrast 
to the thermal instability, n decreases rapidly to zero as Re increases to 8000. For 
Re > 8000, n = 0 remains the most unstable mode and the azimuthal wavenumber 
matches that of the shear instability when the curves intersect. Near the intersection 
of the shear and interactive instability curves, the interactive wave is shorter in the 
axial direction and faster than the shear wave. The two instabilities intersect at  
Re = 16970 and Cr/Re = 30.22. 

At the smaller aspect ratio the interactive instability becomes unstable at  a 
smaller value of Qr/Re than does the thermal instability for Re > 10100, but the 
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FIGUEE 7. Eigenfunctions of 6 for A = 10: ----, thermal mode, Re = 6O00, Gr/Re = 57.07, 
a = 0.75, n = 19; -, interactive mode, Re = 6000, GrlRe = 55.23, a = 2.18, n = 7 ;  - a _ . - - ,  

shear mode, Re = 7876, Gr/Re = 0, a = 2.02, n = 0. 

mode can be clearly identified as early as Re = 8000. At this point, the critical 
azimuthal wavenumber n is 5 and the axial wavenumber a is 1.29. In this region the 
thermal disturbance also h i s  an azimuthal wavenumber of 5,  but the axial 
wavenumber is 0.6. The wave speeds of the two instabilities are roughly equal in this 
region. Thus, the interactive instability can be differentiated from the thermal mode 
by a shorter disturbance wavelength. As Re increases, the azimuthal wavenumber 
decreases, until in the region of intersection with the shear-mode curve, n = 2. The 
axial wavenumber a steadily increases with increasing Re until it reaches a value of 
1.91 at Re = 24000. The disturbance wave speed c, decreases from 0.52 to 0.35 over 
this same region. At Re = 24000, the wavenumbers of the shear instability are n = 
4 and a = 0.94, and the wavespeed c, is 0.34. Thus, the interactive instability can be 
identified by a small number of disturbance 'cells' around the perimeter of the 
annulus and a significantly shorter wavelength. 

The shape of the disturbances in the radial direction can be determined from 
investigation of the eigenvectors for the axial disturbance velocity. Figure 7 shows 
mode shapes for the three identified instabilities with A = 10. The results for the 
thermal and shear instabilities at  Re = 6000 with the inner cylinder heated show that 
there is a distinct difference in the mode shapes. With the thermal mode, the 
disturbance consists of three rotating eddies. Near the inner (heated) wall a strong 
eddy exists owing to the buoyant forces. The viscous action of this eddy includes the 
other two smaller cells. The shear instability at Gr = 0, shown in figure 7, consists of 
a single rotating eddy. The interactive mode also consists of a single rotating eddy, 
but in this case the streamlines are concentrated near the inner (hotter) wall. 

4.2. Heated outer cylinder 

With both aspect ratios, separate instability curves cannot be clearly identified for 
negative Gr (heated outer cylinder). The instability boundary can still be considered 
to consist of three instabilities, but the interface between them is not as obvious as 
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in the case of a heated inner cylinder. The instability that occurs at small Gr is the 
shear instability since it occurs primarily owing to the shear flow in the annulus. 
These instabilities form sections DE of the instability boundaries on figures 4 and 5 .  
At small Re, the instability boundary is symmetric about the Gr = 0 axis with the 
thermal instability that occurs in the case where the inner cylinder is heated. 

As previously mentioned, in the natural-convection limit, the instability boundary 
becomes symmetric about the Gr = 0 axis. Thus, the instability boundary in the 
region where the curves are symmetric is formed by the thermal instability, denoted 
by sections FG on figures 4 and 5 .  In between the thermal and the shear boundaries 
is a region where both thermal and shear-flow effects are important and the 
instability boundary is not symmetric about the Gr = 0 axis. This is the interactive 
instability, denoted by sections EF on figures 4 and 5.  

Considering first the large aspect ratio, at  small Gr/Re the shear instability is 
nearly symmetric with respect to Gr = 0. Although the influence is less pronounced 
for negative Gr, in both cases heating has a stabilizing effect. For a heated outer 
cylinder, the maximum stable Re is 8610 at Gr/Re = -32.5.  Similar to the case of a 
heated inner cylinder, the critical n is zero, and the shear wave speed and axial 
wavenumbers decrease with increasing Re. 

In the larger-aspect-ratio case, the thermal instability possesses many charac- 
teristica identified previously for positive Gr.  A comparison of the results in tables 
2 and 4 shows that, at Re = 150, the critical Gr/Re are almost identical. At Re = 
1000, the difference has increased to about 10 %. As Re increases, a and c, decrease, 
which agrees with the general trend of the thermal instability identified for positive 
Gr. 

The interactive instability also behaves in a manner analogous to the case for the 
inner cylinder heated. Referring to figure 4, proceeding from point F toward point E, 
this curve initially forms approximately a straight line. The slope of this line is about 
equal to the negative of the slope of the corresponding line for positive Gr. The 
azimuthal wavenumber n is zero throughout this range. 

In spite of the similarities discussed above between the cases of the inner-cylinder 
and outer cylinder heated, significant differences can be identified. The first is that, 
in the case of the heated outer cylinder, the different modes blend together in a 
smooth fashion and only one instability can be identified in the intersecting region. 
Secondly, in contrast to the case of a heated inner cylinder, the most unstable 
disturbance for the thermal mode is always axisymmetric (n = 0). Another major 
difference is the shape of the instability boundary. The stabilizing effect of heat 
transfer on the shear instability is much greater in the case of the heated inner 
cylinder. 

In the case of the smaller aspect ratio, figure 5 reveals no symmetry around the 
Gr/Re = 0 axis. Thus the boundary between the interactive and shear instabilities is 
less obvious than it was in the case of the larger aspect ratio. It is still possible, how- 
ever, to identify these instabilities. In the region where Gr/Re is small, the stability 
boundary is formed by a curve with a larger slope than the curve forming the 
boundary at  larger heating values (section DE on figure 5 ) .  The break in the curve 
occurs at  about Re = 8000 and Gr/Re = - 10. Thus, even though a shear instability 
can be identified for this case, its region of influence is relatively small. At small Re, 
symmetry is again observed about the Gr = O  axis. However, in this case the 
symmetry is confined to very small Re. For example, at Re = 150, the critical values 
of Gr/Re for the inner and outer cylinder heated cases are 93.24 and -91.44, 
respectively. At  Re = 500, however, these values are 70.76 and -60.12, a difference 
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of more than 10%. Hence, the region of influence of the thermal instability is also 
quite small in this case, and most of the instability boundary in the lower half-plane 
is formed by the interactive instability, section EF in figure 5. 

With the smaller aspect ratio, it is again seen that the interactive instability 
possesses some general characteristics similar to the corresponding instability that 
occurs with a heated inner cylinder. For example, 01, c, and the critical value of 
GrlRe decrease with increasing Re. However, in this case the numerical results 
are significantly different than those for positive Gr. The magnitude of Gr/Re at 
which the flow becomes unstable is much less with the outer cylinder heated. For 
instance, at  Re = 8000, the critical Gr/Re with a heated inner cylinder occurs are 
54.28; with a heated outer cylinder, this value is - 17.01. The wave speed is also 
slower with the heated outer cylinder. In  contrast to the results for a heated inner 
cylinder, n for this case is zero for Re between 150 and 6000, However, at Re = 8O00, 
n = 1 has become the most unstable mode, and a t  the intersection with the Gr = 0 
axis, n = 2 is the critical mode. Thus, the shear-instability disturbances are not 
axisymmetric. However, over most of the region, the thermal and interactive 
instability disturbances are axisymmetric, as they are with the larger aspect ratio. 

5. Conclusions 
It has been demonstrated that mixed convection in a vertical annulus is unstable in 
a large portion of an appropriate parameter space. This suggests that parallel mixed- 
convection flows with reverse-flow regions are unlikely to be observed experi- 
mentally, except possibly at  very low Re. Heat-transfer correlations developed from 
numerical techniques that assume laminar flow without considering flow instability 
are likely to give very poor results. 

The marginal stability boundary is found to be formed by three types of 
instabilities. At low speeds, the thermal instability is dominant. At higher speeds and 
low heating, the flow becomes unstable to a shear instability. In between these cases 
is the interactive instability. 

The shape of the marginal stability boundary in the (Re/Gr/Re)-plane depends on 
whether the inner or outer cylinder is heated. With the inner cylinder heated, the 
boundary is formed by three distinct curves which can be easily differentiated from 
one another by the different wavenumbers and wave speeds of each instability. In  
particular, the thermal instability is characterized by a larger axial wavelength and 
higher disturbance wave speed than those of the interactive instability in the regions 
near the intersection of the curves. Near the points of intersection of the interactive 
and shear instabilities, the interactive instability has a smaller axial wavelength and 
a higher disturbance wave speed than does the shear instability. It is also found that 
the most unstable disturbances are very often asymmetric when the inner cylinder 
is heated. 

With the outer cylinder heated the boundary is formed by a single smooth curve 
and the identification of the separate instabilities is not as obvious. The three 
instabilities mentioned above can still be identified, however, by investigation of the 
marginal stability boundary. With the outer cylinder heated, the most unstable 
disturbances are usually axisymmetric. The only exception to this is with an aspect 
ratio of 2.414 and low amounts of heating, when it is found that the first azimuthal 
mode (n = 1) is the most unstable. This result is expected however, since it is found 
that isothermal flow in an annulus of this aspect ratio first becomes unstable to the 
second azimuthal mode (n = 2). 
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